
Advanced Programming Languages

Daily Topics

CS505 Page | 1

Day 1:

 Overview of Advanced Programming Languages

o Elements of Programming Language Design

o Abstractions in Programming

 Language Semantics (domain)  Program style  Software Quality

o Common abstractions at basis of all PLangs

 Importance and value of FP

o Basis in mathematics → λc

o Correctness, Abstraction, HLL

 Formal Semantics

o Language by example confusions

o Informal (English)  precise, clear, simple

  long, complex, obfuscated…

o Axiomatic, Operational, Denotational, …

 Course Topics

o FP  SML

o PLang model(s)

o Denotational Semantics

o Semantic prototyping (in SML)

 Course Structure & Administration

o Daily Schedule

o Quizzes

o Labs

o Grading, Exams

 Reading

o Homework

Advanced Programming Languages

Daily Topics

CS505 Page | 2

Day 2: Syntax & Grammar

 Review…

 Programming Language Families & Paradigms

o IP, PP, LP, CP, DP, OO, FP, …

o Language families, evolution, & paradigms

o Multi-paradigm..?

o Functional, Imperative, Scripting, …

 Features of FP

o Non-destructive  referential transparency

o FCF, HOF  functional composition

o True-polymorphism, type inference, patterns, …

 Syntax Definition  Grammar

o Formally: G = < Σ, N, P, S >

o Chomsky Hierarchy = Machines :: Languages

o Meta-language = BNF

 Self-defining? L1 ← BNF ← L2 ← L3 ← L4 … .. DD

o Parsing tools and process

 Levels of Syntax

o Micro: lexical tokens

o Macro: Phrase structure

o Parsing & Lexical tools

 Vedic Language: Name ≡ form

 Reading :Backus

o Homework: Three summary points from reading

Advanced Programming Languages

Daily Topics

CS505 Page | 3

Day 3: Semantic Models and Principles

 Quiz

 Review…

o Backus

o IP over-constrained (=how)  detailed, LLL, sequential

o FP  HLL (=what)  abstraction, composition, …

 Basic (semantic) Elements of programming languages

o Review

o Identify basic semantics of program(s)

 Semantic Definitions

o Semantic domains

 values

o Semantic Model

 Store, environment

o Semantic elements

 Commands, Definitions, Expressions

o Semantic equations

 C(Cmd) → Δ Sto

 D(Def) → Δ
+
 Env

 E(Exp) → Value

 Composition, and constructs

o Qualification, composition

o D{D}, D{C}, D{E}, …

 Simple semantic (design) principles

o Type completeness

 Semantic principles

o Principle of qualification

 D{C} → D, …  D{ Si } → Si

o Principle of abstraction

 FC () → C, …  FSi () → Si

o … (more later)

Advanced Programming Languages

Daily Topics

CS505 Page | 4

Day 3b: Introduction to FP in SML

 Note changed model for FP

o No Cmd, so only {Def, Exp}

o No S.E.

 Main characteristics of FP

 Tools for SML

 Reading: Michaelson

o Homework (Main Points from reading)

Advanced Programming Languages

Daily Topics

CS505 Page | 5

Day 4a: Semantic principles and concepts

 Quiz & review

 Semantic Principles: (Review)

o Principle of Type Completeness

o Orthogonally

o Abstraction

o Qualification

o Correspondence

o Parameterization

 Declarations & Composition

o Sequential, Simultaneous, Qualification, Recursive

 Use semantic model to understand Java/IP features

 First Class Functions (FCF)

o First-Class = All (appropriate) operations

o FCF  pass, return as values

 basis of HOF

 Lambda λ

o Standard model for function abstractions

o Anonymous function abstraction

o ≈ function expression

 Closures

o Important –basis of FCF

o Java ≈ inner classes

o Issue: HOF connection to enclosing environment(s)

 Stack based ARs

o Downward FunArgs ≈ OK

 Pascal

 Requires closures

o Upward FunArgs

 Harder,

 Lifetime(closure) > lifetime(stack based AR)

o Partial application

Advanced Programming Languages

Daily Topics

CS505 Page | 6

Day 4b: Introduction to Functional Programming & SML

 Review…

o Have simple semantic model of IP

 Note definitions of FP

o No Cmd, so only {Def, Exp}

o HOF, FCF

o Currying, partial application

o Type inference

o Patterns and unification

o (true) parametric polymorphism

o Type completeness

 SML  FP

o SML: modern, new, different(!), powerful, simple

 More examples: day1.ml

o Semantic features

o In SML syntax…

o Values

 Val  Def (≠ Assign, Cmd)

 non-destructive → referential transparency

o Functions, HOF

o Type signatures, type inference

o Closures & Partial applications

o Some non-pure FP features; I/O

 Michaelson examples

 Reading & Assignment: Watt §13

Advanced Programming Languages

Daily Topics

CS505 Page | 7

Day 5: Features of FP in SML (Review)

 (From review of day1.ml)

 Semantic Principles: (Review)

o Referential transparency

 No assignment /cmds

 Only definitions

 Incremental nested scopes

o (auto-) type inference & signatures

 fn : int → int

 Function types are right-associative

o Lambda

 = Anonymous function expression

  FCF

o Functions

 Always one argument (at a time…) (!) (monadic)

 Tuples: multiple → one

 fn : int → int → int

 Curried functions  HOF

 Partial application

 Function application binds tightly, is left-associative

o Polymorphism

 Type variables α (‘a)

 = type Type // meta-type!

o Patterns

 Equational style

o Other…

 Type constraints (:real)

 Unit ()

 No auto-conversions (strict types)

Advanced Programming Languages

Daily Topics

CS505 Page | 8

Day 5: Functional Programming & SML

 Review of day2.ml examples…

o Curry/ PA → incremental specialization, re-use

o add|1 (1) → increment|1

 Compare state in Fp

o Recursion vs. iteration

o Bindings v.s. store

 Polymorphism

o Any type  type insensitive

 Can have limited poly: α
=
 (??)

o Lists…

o Parametric (real), not ad-hoc

 ML features

o Patterns → { match, unify)}

o Tuples :: heterogeneous, ordered

o Lists :: homogenous

 List processing

o hd, tail  pattern match (x::Xs)

o constructor ::, append @

 constructors  create (unify), and decode

o generally use polymorphism & recursion

o Recursion & patterns

 Definitions

o Recursive : rec

o Functions: λ|1 or fun|n

 FP idioms

o Functional composition: o

o Helper functions

 Examples…

 Assign: Watt & Michaelson; reading, exercises

Advanced Programming Languages

Daily Topics

CS505 Page | 9

Day 5: Review: Michaelson

 § 9.1 Types

 § 9.3 Basic Types

o bool, string, int

 § 9.4 Lists

o Polymorphic, homogenous, variable length

 § 9.5 Tuples

o Heterogeneous, ordered, fixed length

o Selection – bind name to field(s)

fun get3rd (_,_,n:int) = n;

 Strings

o Standard operations: ^ and or + * …

o List operations :: hd tail size

 Pattern matching

 Type expressions = alias

o Defines new types

o Gives name to a structural pattern

 type checking on usage

o Type constructors: * + →

 Datatypes

o User defined type and constructors (and fields)

Advanced Programming Languages

Daily Topics

CS505 Page | 10

Day 6: Functional Programming & SML: Higher Order Functions

 Review…

o Review Watt reading & solutions

 Continue with Day2.ml examples…

 User defined types

o Type constructors

 ML features

o Patterns over { constructors, constants)

 ≈ inverse OO

 Function dispatched ad-hoc polymorphism

o Constructors = duality  construct, match+unify (de-compose)

 Compare patterns : Polymorphism

o FP = parametric

o OO = sub-type

o FP patterns ≈ overloading → ad-hoc poly

 Examples & features

o op & $op

o composition: o (monadic), oo (dyadic)

 combinators

 sections { secl, secr }

 FP idioms

o filter, map, reduce

 very general; most functions in terms of these

 reduce = fold  foldl/foldr

 separates operation from control (=recursion)

 most general = encapsulates general (primitive recursive) recursion

 can so fold → {filter, map, reduce} → …. ∞

o accumulators

 → tail-recursion

Advanced Programming Languages

Daily Topics

CS505 Page | 11

Day 7: Functional Programming & SML: Examples and methods

 Quiz & Review;

o Review homework exercises (any, all, member, …)

 Examples & features (Day2, Day3, …)

o Nested λ expressions  multiple args.

o op & $op

o composition: o (monadic), oo (dyadic)

 combinators

 sections { secl, secr } ≈ non-commutative PA

 position selective PA composition

 Eager /lazy evaluation

o ML functions are applicative (eager) = CBV

 alternate: normal (lazy)

 eager  strict

o two special forms

 andalso (≡ if/then/else) & orelse

 “short-circuit” = lazy

 FP idioms

o curry/uncurry

 goals, definitions, and signatures

 conversion examples

 Other ML features /issues

o equality polymorphism: a’, a’’ (α, α
=
)

o top-level value polymorphism.. (not!)

 Review Michaelson reading & solutions

o Types, constructors

o Review Watt reading & solutions

 Next:

o Review and Summary of FP & SML

Advanced Programming Languages

Daily Topics

CS505 Page | 12

Day 8: Review & Summary of FP

 Quiz & Review;

 Review Michaelson reading & solutions

o Types, constructors

o Expressions

 Interpreter: N → n –(computation)→ n’  N’

 NB: ≠ Number !!

o Review Michaelson & Watt reading/solutions

 Details of solution: 9.6

 Data structures

o SR, but no (visible) pointers!

o Examples (Michaelson 9.18)

 Lists (and DIY lists)

 Trees

o Constructive tree mappings (Watt.1 - 13.1.2)

 trees.ml

o dictionary: functional data structure

 Exercise(s)

o Write signature & definition for dict example

 Next:

o Introduction to Denotational Semantics

Advanced Programming Languages

Daily Topics

CS505 Page | 13

Day 9: Introduction to Denotational Semantics

 Quiz & Review

 Goal is formal model

 Types of models

o AS, DSem, OS, … AS, …

 Standard elements and format for models

o Syntactic domains

o Syntactic equations

o Semantic domains

o Semantic functions

 Declarations

 Definitions

 Simple (standard) semantic model

o Store, environment

 Binary Numerals example (Ex. 3.1)

o Maps: Numerals  Numbers

 Calc.1 (Ex. 3.2)

o Maps: Keystrokes  Numbers

 Model of Store

o Functional model (HOF dictionary)

 Simple, (≠ efficient)

 NB: models store in FP (no store!)

o Direct and indirect denotations

Advanced Programming Languages

Daily Topics

CS505 Page | 14

Day 10: Denotational Models: Stores

 Quiz & Review

 Semantic Model
++

 Model of Store

o Functional model (HOF dictionary)

 Simple, (≠ efficient)

 NB: models IP store in FP (no store!)

(Represent change from within non-change)

o Tagged locations

{ Storable, unused, undef }

o Fancier model with memory management (allocate, deallocate)

(for later…)

 Now can model Semantics with Commands

o Calc.2 (Ex. 3.3)

o New additional arguments to semantic equations

 model state (Store)

o Review details of semantic equations

Advanced Programming Languages

Daily Topics

CS505 Page | 15

Day 11: Denotational Models: Environments

 Quiz & Review

 Semantic Model
++

 Semantic Model

o Definitions, blocks

o Scope + Defn  Binding(s)  Env

 Model of Environment

o Direct and indirect denotations

o Domains and types { undef, Denotable }

 Implementation

o Functional model (HOF dictionary)

 Semantics with Definitions

o Calc.3 (Ex. 3.3)

o New additional arguments to semantic equations

 model Definitions (Environment)

o Review details of semantic equations

 Review for exam (?)

Advanced Programming Languages

Daily Topics

CS505 Page | 16

Day 12: Denotational Models: Stores & Environments

 Quiz & Review

 Semantic Model
++

o Combine { Sto & Env }

o  { Exp, Cmd, Def } 

 Semantic Model

 Definitions

o Review Imp: (Watt Ex. 3.6)

o Loop → Recursion (!)

 Semantic empathy (of meta-language)

o Recursive Definitions

o Lazy construct(s)

Advanced Programming Languages

Daily Topics

CS505 Page | 17

Day 13: Denotational Models: Function Abstractions

 Semantic Model
++

o Combine { Sto & Env }

o  { Exp, Cmd, Def } 

 Structure and semantics of function definitions

o Name (Parameters) {Body}

o Parameters  local environment(s) (ed + ep)

o Arguments: evaluate in ei (invocation)

 Recall; Principle of Correspondence

o Argument passing ← → local environment

 And other Semantic Principles

o f(){ Si } → Si Principle of Abstraction

o D{ Si } → Si Principle of Qualification

o  Si → f(Si) Principle of Parameterization

 Abstractions ( Si …)

o Cmd → procedure

o Expr → function

o Declarations → module (class)

o Type → class

o L-value → ??

o Location → L-value

 Implementation

o (Args  RT) → (ep  CT) → Eval{ body }

 Definitions

o Review Exp.1: (Watt Ex. 3.7)

o Recursion(?) (not yet..)

 f  ed

o Review Imp.1: (Watt Ex. 3.8)

Advanced Programming Languages

Daily Topics

CS505 Page | 18

Day 14: Denotational Models: Function Abstractions & Parameters

 Semantic Model
++

o [function] Abstracts

o Review: Exercise

 Write the definitions from Exp.1 for functions

 Other parameter/argument types?

o R-values|value → CBV

o L-values|loc → CBR

o Many other “call-by”s …

 Definitions

o Review: Exp.3 (Watt Ex. 3.10a)

 Single parameter

o New: Exp.4 (Watt Ex. 3.10b)

 Multiple parameters

 CBV/CBR Exercise

o Which examples work?

o Use: logic/experience, principle of correspondence, Equations (to prove)

 Recursive abstractions (Exp.2)s

o Recursive? → ML recursion (!)

o Semantic empathy (of meta-language)

 Review readings & Homework’s

Advanced Programming Languages

Daily Topics

CS505 Page | 19

Day 15: Denotational Models: Language Definitions

 Semantic Models

o Domains of semantic functions

 Example: (4.1)

o Expressions with S.E.

 { C; E } → E (??!) 

 { C, E } → C  Still 

  Neither!

o Forces redefinition of all Expressions

o Also forces evaluation order → non-logical, constrained

o Typical example: I
++

  Value + Sto’

o Thus programs harder to understand & reason about

 Structure of Programs

o Syntactic Domain

 Program ::= program (input id : T, output Id : T) ~ Cmd

o And Semantic equation

 Run: Program → value|in → value|out

 + Definition…

 I/O in programs

o I/O is not functional

o Not logical, sequential, side effect

o Can model as stream

o Or Monad

Advanced Programming Languages

Daily Topics

CS505 Page | 20

Day 16: Denotational Models: Language Prototyping

 From abstract to concrete

o Convert pseudo-ML → SML

 Example: (4.1)

 Introduction to Prototyping lab(s)

o Basic skeleton given

o Complete definitions

o Choose extensions

 Evaluate the semantics of the Target language (~IMP)

o Closures?

o HOF?

o Recursion?

o Eager/lazy?

 Semantic Prototype Lab

o Start ≈ Ex. 4.1

o Lab Phases…

o Timesheet

o Policies…

Advanced Programming Languages

Daily Topics

CS505 Page | 21

Day 17: Continuations: An abstraction & model of control

 Semantic Model:

o Model of control?

o So far; unspecified (Expr)

o Or sequential (Cmd) [Why?]

o Yet, several missing elements

 Error handling

o Now in ML implementation, but not language definition

o Implied sequential propagation

o Messy to add to descriptions,

can simplify with better composition 

o Still, is error chaining; sequential propagation

o ≠ exceptions, which are global handling

 Continuations

o Convert from sequential parts  wholeness

o Are programming technique (language feature)

o Good semantic model

o Good model and tool for implementation (compilers)

o Others: backtracking, threads, events, errors, exceptions, co-routines, …

o Current usage: return ≈ anon (implicit)continuation

 Semantic Model
++

o CCont, ECont, DCont

 DSem become incremental semantic compositions

 Semantic elements as continuation transformers

o CPS – make continuations explicit, and manipulatable

o Affects all equations (!) → new semantic arguments

o Naturally leads to functional (continuation) compositional forms

 Model
++

 → Features
++

o Return, jump, exceptions, …

o Control abstracts → sequencers

 Assignment:

o Read Tennent §13.1-3

Advanced Programming Languages

Daily Topics

CS505 Page | 22

Day 18: Continuations: Continuation Semantics

 Adding continuations to semantic model

o CCont, ECont, DCont

o Revised domains

o Semantics become Continuation transformers

 This is the standard model

o Example of typical equations

 Read Tennent definitions

o Review (13.2) – basic notation

o T13.3: ≈ same as our IMP model

o T13.4  Continuation semantics

 Assignment:

o Read Tennent §13.4,7

Advanced Programming Languages

Daily Topics

CS505 Page | 23

Day 19: Continuations: Review

 Review basic equations

 Exercise:

o Write equations…

 Additional features

o goto

o leave (ex. 13.

 Review tests in Impc

 Assignment:

o Lab: Impc.ml

